Part Number Hot Search : 
12001 100V25 12001 SB180 IRG4B MC14014B 12001 H5007
Product Description
Full Text Search
 

To Download GS3031 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  features ? dual channel signal processing ? 2nd (4th) order state variable filter ? adjustable crossover frequency ? adjustable compression ratio from 1:1 to 4:1 ? independent compression ratio adjustment for low and high frequency band ? adjustable agc threshold levels ? unique twin average detectors ? handles high input levels ? low thd and imd distortion ? drives class d integrated receivers ? mpo range externally adjustable standard packaging hybrid typical dimensions 0.250 in x 0.115 in x 0.080 in) (6.35 mm x 2.91 mm x 2.03 mm) dynameq ? ii wdrc system device description the dynameq ? ii hybrid family is a second generation wide dynamic range compression (wdrc) system. GS3031 (gs3032) hybrid incorporates 12 db/oct (24 db/oct) filtering. all capacitors necessary for operation are included on the hybrid. the gain and frequency response is dependant on the users environment. twin averaging detector circuits are optimized for sound quality during normal listening without sacrificing comfort during sudden loud inputs. all input signals to dynameq ? ii, are processed by 2:1 compression before subsequent band splitting. the 12 db/oct (24 db/oct) band split filter ahead of the expander/compressor circuits allows for independent compression ratio adjustment (1:1 to 4:1) in high and low frequency channels. the gain setting stage is followed by a class d integrated receiver preamplifier stage. symmetrical peak clipping is used to achieve mpo adjustment. functional block diagram all resistors in ohms, all capacitors in microfarads, unless otherwise stated patent pending out v b v reg r th mpo in gnd r ? r lo b out bc in b in f out r hi 4:1 2:1 1:1 0 22 c6 c7 0 22 GS3031 (gs3032) 10n c1 c2 c5 c4 c3 0 1 0 1 0 1 0 2 slow average detector fast average detector control 10k rectifier vb 50k regulator 48k 48k 8k4 1m 1m 14k 12k 1 x - b - a - c 12 db / oct (24 db / oct) band split filter high frequency expander / compressor low frequency expander / compressor r agc_in r h r l 5 7 9 10 11 12 13 14 16 17 15 8 6 2 1 3 4 GS3031/gs3032 data sheet revision date: july 1998 document no. 521 - 52 - 02 gennum corporation p.o. box 489, stn. a, burlington, ontario, canada l7r 3y3 tel. +1 (905) 632-2996 web site: www.gennum.com e-mail: hipinfo@gennum.com
521 - 52 - 02 2 parameter symbol conditions min typ max units hybrid current i amp - 370 530 m a minimum voltage vb 1.1 - - v total harmonic distortion thd v in = -40dbv at 1khz - 0.2 1.0 % thd with maximum allowable input thd m v in = -23dbv, rvc = 47k w -210% input referred noise irn aweight - 3.0 - m v rms total system gain a v v in = -90dbv 46 49 52 db regulator voltage v reg i load = 30 m a 890 930 1000 mv agc lower threshold th lo -91 -87 -83 dbv upper threshold th hi -36 -32 -28 dbv compression gain range d a gain(-90dbv in ) -gain(-30dbv in ) 37.5 40.5 43.5 db system gain in compression a 60 v in =-60dbv 26 29 32 db min. compression ratio cmp 1 :1 v in =3khz, -60dbv to -40dbv, rhp=1:1 rlp=1:1 0.9 1.0 1.1 ratio max. comp. ratio cmp 4 :1 v in =3khz, -60dbv to -40dbv, rhp=4:1, rlp=4:1 3.6 4.0 4.3 ratio fast detector time constant t fast -10-ms slow detector time constant t slow - 220 - ms filter maximum cross-over frequency ? c_0 r ?c =0 w 3.0 3.9 - khz nominal cross-over frequency ? c_22 r ?c =22k w 1.5 1.9 2.3 khz minimum cross-over frequency ? c_220 r ?c =220k w - 0.9 1.4 khz filter rolloff rate (gs3027) - 12 - db/oct (gs3028) - 24 - db/oct stage a and b --- open loop gain (b) a ol_b -52-db input impedance (a) r in 91113 k w output stage stage gain a c v in =-30dbv 7 9 11 db max output level mpo r vc =220k w ,v in =-25dbv -14.5 -12.5 -10.5 dbv mpo range d mpo r mpo =0 w to 50k w 13 15 17 db output resistance r out -24-k w caution class 1 esd sensitivity absolute maximum ratings parameter value / units supply voltage 3 vdc power dissipation 25 mw operating temperature range -10 c to 40 c storage temperature range -20 c to 70 c pad connection conditions: supply voltage v b = 1.3 v, frequency = 1 khz, temperature = 25 c electrical characteristics all conditions and parameters remain as shown in test circuit unless otherwise stated in "conditions" column. 4.1 in 1.1 15 11 14 10 9 8 7 6 5 4 3 2 1 17 rfc v reg 2.1 rhi rlo gnd mpo b out b in f out bc in out v b r th 16 13 12 4:1 in 1.1 15 11 14 10 9 8 7 6 5 4 3 2 1 17 rfc v reg 2:1 rhi rlo gnd mpo b out b in f out bc in out v b r th 16 13 12
521 - 52 - 02 3 r mpo =0 v b 0 22 c6 c7 0 22 GS3031 (gs3032) 10n c1 c2 c5 c4 c3 0 1 0 1 0 1 0 2 slow average detector fast average detector control 10k rectifier vb 50k regulator 48k 48k 50k 8k4 1m 1m 14k 12k 1 x - b - a - c 12 db / oct (24 db / oct) band split filter high frequency expander / compressor low frequency expander / compressor r agc_in r h r l 5 7 9 10 11 12 13 14 16 17 15 8 6 2 1 3 4 r th = = 22k r vc = 100k 3.9k 2 2 v in r ? fig. 2 maximum flexibility hearing instrument application fig. 1 production test circuit all resistors in ohms, all capacitors in microfarads, unless otherwise stated all resistors in ohms, all capacitors in microfarads, unless otherwise stated any knowles or microtronic microphone 0 22 r mpo r th 100k log r ? 100k log 50k log r vc 100k log 200k linear 200k linear 2 2 2 any knowles class d receiver v b v b r hi r lo c7 0 22 GS3031 (gs3032) 10n c1 c2 c5 c6 c4 c3 0 1 0 1 0 1 0 2 slow average detector fast average detector control 10k rectifier vb 50k regulator 48k 48k 8k4 1m 1m 14k 12k 1 x - b - a - c 12 db / oct (24 db / oct) band split filter high frequency expander / compressor low frequency expander / compressor r agc_in r h r l 5 7 9 10 11 12 13 14 16 17 15 8 6 2 1 3 4
521 - 52 - 02 4 fig. 3 minimum component hearing instrument application fig. 4 characterization circuit (used to generate typical curves) 0 22 r mpo =0 r th = r ? =100k r vc =100k r hi1 = 200k r hi2 = 0 r lo2 = 0 r lo1 = 200k v b =1.3v 3.9k 2 2 50k pink noise generator or 1khz for i/o c7 0 22 GS3031 (gs3032) 10n c1 c2 c5 c6 c4 c3 0 1 0 1 0 1 0 2 slow average detector fast average detector control 10k rectifier vb 50k regulator 48k 48k 8k4 1m 1m 14k 12k 1 x - b - a - c 12 db / oct (24 db / oct) band split filter high frequency expander / compressor low frequency expander / compressor r agc_in r h r l 5 7 9 10 11 12 13 14 16 17 15 8 6 2 1 3 4 all resistors in ohms, all capacitors in microfarads, unless otherwise stated all resistors in ohms, all capacitors in microfarads, unless otherwise stated r vc 100k log any knowles class d receiver v b 0 22 any knowles or microtronic microphone v b c7 0 22 GS3031 (gs3032) 10n c1 c2 c5 c6 c4 c3 0 1 0 1 0 1 0 2 slow average detector fast average detector control 10k rectifier vb 50k regulator 48k 48k 8k4 1m 1m 14k 12k 1 x - b - a - c 12 db / oct (24 db / oct) band split filter high frequency expander / compressor low frequency expander / compressor r agc_in r h r l 5 7 9 10 11 12 13 14 16 17 15 8 6 2 1 3 4
521 - 52 - 02 5 typical performance curves output level (dbv) 1.2:1 1:1 1.5:1 4:1 3:1 2:1 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -90 - 80 -70 -60 -50 -40 -30 -20 input level (dbv) fig. 5 i/o transfer function for different compression ratios 50 40 30 20 10 0 -10 gain (db) v in = -40dbv v in = -20dbv v in = -60dbv v in = -80dbv v in = -96dbv 20 100 1k 10k 20k frequency (hz) fig. 6 frequency response for different input levels -50 -40 -30 -20 input level (dbv) fig. 9 i/o transfer function for different r mpo resistors compression 1:1 output level (dbv) r m po = 0 w r m po = 10k w r m po = 22k w r m po = 50k w output level (dbv) r th = r th = 0 w r th = 10k w r th = 22k w r th = 100k w r th = 47k w -10 -20 -30 -40 -50 -60 -70 -100 -90 -80 -70 -60 -50 -40 30 -20 input level (dbv) fig. 10 i/o transfer function for different r th resistors 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 compression ratio (ratio) fig. 7 compression settings resistor ratio for high pass channel (r hi1 & r hi2 ) and low pass channel (r lo1 & r lo2 ) gain (db) v in = -60dbv r vc = 220k w r vc = 100k w r vc = 47k w r vc = 22k w r vc = 10k w r lo1 r lo1 +r lo2 r hi1 r hi1 +r hi2 ( ) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 50 40 30 20 10 0 -10 20 100 1k 10k 20k frequency (hz) fig. 8 frequency response for different r vc values -10 -20 -30 -40 -50
521 - 52 - 02 6 1000 100 10 1 gain (db) 20 100 1k 10k 20k frequency (hz) fig. 13 crossover frequency representation for GS3031 processor r ?c = 1:1 in low frequency 4:1 in high frequency 4:1 in low frequency 1:1 in high frequency v in = -80dbv gain (db) 20 100 1k 10k 20k frequency (hz) fig. 14 crossover frequency representation for gs3032 processor v in = -80dbv 1:1 in low frequency 4:1 in high frequency 4:1 in low frequency 1:1 in high frequency r agc resistor value (k w ) 198k w 9k w r h & r l resistors values (k w ) -100 -90 -80 -70 -60 -50 -40 30 -20 input level (dbv) fig. 11 stage a compressor feedback resistor value -100 -90 -80 -70 -60 -50 -40 30 -20 input level (dbv) fig. 12 expander / compressor resistors values 1.6m w 72k w 15k w 1:1 4:1 2:1 crossover frequency crossover frequency 50 40 30 20 10 0 -10 gain (db) 20 100 1k 10k 20k frequency (hz) fig. 15 GS3031 frequency response for different r ?c resistor values 100k w 47k w 22k w 10k w 0 w 50 40 30 20 10 0 -10 gain (db) 20 100 1k 10k 20k frequency (hz) fig. 16 gs3032 frequency response for different r ?c resistor values v in = -80dbv 100k w 47k w 22k w 10k w v in = -80dbv 1:1 in low frequency gain 4:1 in high frequency r ?c = 1:1 in low frequency gain 4:1 in high frequency r ?c = 50 40 30 20 10 0 -10 50 40 30 20 10 0 -10 1000 100 10 1 r ?c = 0 w
521 - 52 - 02 7 100 1k 10k frequency (hz) fig. 17 thd and noise vs frequency 10 1 0.1 thd & noise (%) GS3031 gs3032 -80 -70 -60 -50 -40 -30 -20 input level (dbv) fig. 18 thd and noise vs input level thd & noise (%) GS3031 10 1 0.1 gs3032 3k 10k 100k frequency (hz) fig. 19 intermodulation distortion (ccif) vs frequency 10 1 0. 1 imd (%) gs3032 GS3031 v in = -40dbv d ? = 200hz -80 -70 -60 -50 -40 -30 -20 input level (dbv) fig. 20 intermodulation distortion (ccif) vs input level imd (%) ? = 4khz d ? = 200hz GS3031 gs3032 10 1 0.1 0.01 v in = -40dbv ?= 1 khz
521 - 52 - 02 8 15 11 14 10 9 8 7 6 5 4 3 2 1 17 16 13 12 0.090 max (2.28) gs3032 xxxxxx 0.115 (2.92) 0.0165 (0.42) 0.250 (6.35) 0.015 (0.38) dimension units are in inches. dimensions in parenthesis are in millimetres converted from inches and include minor rounding errors. 1.0000 inches = 25.400 mm. dimension 0.003 ( 0.08) unless otherwise stated. xxxxxx - work order number. component name - either GS3031 or gs3032 this hybrid is designed for point to point soldering. contact gennum representative for pad layout in electronic format. fig. 21 hybrid layout & dimensions document identification: data sheet the product is in production. gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible. gennum corporation assumes no responsibility for the use of any circuits described herein and makes no representations that the y are free from patent infringement. ? copyright september 1995 gennum corporation. all rights reserved. printed in canada. revision notes: updated to data sheet gennum corporation mailing address: p.o. box 489, stn. a, burlington, ontario, canada l7r 3y3 tel. +1 (905) 632-2996 fax +1 (905) 632-2814 shipping address: 970 fraser drive, burlington, ontario, canada l7l 5p5 gennum japan corporation c-101, miyamae village, 2-10-42 miyamae, suginami-ku, tokyo 168-0081, japan tel. +81 (3) 3334-7700 fax: +81 (3) 3247-8839


▲Up To Search▲   

 
Price & Availability of GS3031

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X